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Abstract
Hybrid functional calculations within density functional theory are carried out to
investigate the electronic structure of boron-interstitial clusters (BICs). A one-
parameter hybrid functional is chosen is to give accurate results for the whole
electronic structure (including the gap) and the elastic properties of crystalline
silicon. It is shown that this approach provides dependable defect level positions
in the gap. Investigation of the boron + vacancy and boron + self-interstitial
centres gives a consistent description of the experimentally observed G10 and
G28 centres. The electronic structure of BICs, which may affect the activation
rate of boron implantation, are reported. The one-electron level positions of
isolated BnIm defects are given.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Boron-interstitial clusters (BICs) are a key problem in the control of diffusion and activation
of ultra-shallow boron implants in ULSI silicon device technology. Many of the boron atoms
get trapped in BICs, which provide significantly fewer holes than the number of boron atoms
in them. In recent years attempts have been made to determine formation and dissolution
energies of the possible clusters from first principles theoretical calculations [1–3]; however,
apparently, energy calculations alone were not sufficient to establish the key players in the
clustering process of boron. As an alternative, the most important BICs could be identified
based on their spectroscopic properties. The electronic structure provides a fingerprint for
defects: the position of one-electron energy levels in the band gap can be measured optically or
electronically, while the spatial extent of the corresponding states are accessible by magnetic
resonance measurements if the defect is in a state of non-zero spin. Following on from

0953-8984/05/222141+13$30.00 © 2005 IOP Publishing Ltd Printed in the UK S2141

http://dx.doi.org/10.1088/0953-8984/17/22/001
mailto:p.deak@eik.bme.hu
http://stacks.iop.org/JPhysCM/17/S2141


S2142 P Deák et al

the calculations of the vibration spectra of a great number of BICs earlier [4], the present
paper describes their electronic structure, obtained by a hybrid functional within density
functional theory, to avoid the well-known ‘gap’ error of standard methods. There are two
experimentally well documented boron defects in silicon: the boron + vacancy (Si-G10) [5]
and the boron + interstitial (Si-G28) complex [6]. These are used here as test cases. In addition,
the electronic structure of those BICs are presented, which were found to be important in the
clustering process [2].

The usual nomenclature of BICs, BnIm , is based on the number n of boron atoms and the
number m of interstitials involved in the cluster, irrespective of the fact that the interstitial is a
boron or a silicon atom. In this notation, BI may as well mean an interstitial boron or a silicon
self-interstitial next to a substitutional boron. Such systems are configurational isomers with
the same number of atoms. In order to be able to differentiate among the possible isomers, the
present study also uses the notations Sii, Bi, and Bs for interstitial silicon and boron, and for
substitutional boron, respectively.

2. Methods

Nowadays, density functional theory (DFT) is the most often used method for electronic
structure calculations but, as is well known, all its conventional implementations, i.e., both
LDA (local density approximation) and GGA (generalized gradient approximation), lead to
band gaps which are lower by ∼50% than the experimental values [7, 8]. The reason is the
inappropriate description of electron self-interaction in the respective exchange–correlation
potentials. The application of quasi-particle corrections within the original GW method [7]
is not yet possible for large systems, and even approximate GW calculations [9] are much
too expensive. It has been shown that by using an exact exchange potential with any of the
correlation potentials in DFT, the gap error can largely be corrected [8] but, at present, no
computer code exists which would practically allow defect calculations on large supercells
using such an approach either.

According to experience, the ‘band gap error’ of LDA and GGA manifests itself mainly
in a more or less rigid shift of the conduction band (CB) states with respect to the valence
band (VB) states. The error in the position of VB states is minor and the relative error among
CB states is also often smaller than the error in the gap3. This observation has led to the
introduction of the so-called ‘scissor operator’: a rigid shift of the CB states with respect to
the VB edge [10]. Electronic states of substitutional defects can always be expanded on the
complete basis of the perfect crystalline states. The scissor operator would then shift the defect
levels in proportion to the contribution of CB states in the expansion. Since, in fact, the ‘band
gap error’ concerns both bands and also relative energies in the bands, the scissor operator
gives only a very rough correction, and it does not even work well for interstitial defects.
Unfortunately, the error in the band gap has severe consequences on the calculated electronic
(and sometimes even the geometric) structure of the defect. With the lack of an accurate
correction for the CB (and of any for the VB), the level positions in the gap, calculated in the
framework of LDA or GGA for complex defects, are rather uncertain. This also has an effect
on comparing their formation energies. In addition, if—in extreme cases—the defect level
slips into or out of the bands due to the band gap error, the calculated equilibrium geometry
may be completely wrong. Shallow level defects also represent a problem [11]. Therefore, for

3 N.B.: Typically the VB and the CB are narrower in plane wave LDA calculations than observed. The difference at
the VB is small, indeed: e.g., 12.2 eV in Si, instead of 12.5 eV. However, the calculations in silicon result in 0.5 eV
for the indirect band gap and 2.5 eV for the direct gap at the centre of the Brillouin zone, compared to the observed
1.2, and 4.2 eV, respectively. So the rigid shift of CB states does not always work very well.
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Table 1. Position of the highest occupied orbital of the BSi + (Ci)2 complex in 3C-SiC with
respect to the perfect crystal VB edge (in eV) in the positive and negative charge state at the centre
of the Brillouin zone in a 64-atom supercell. In both cases the orbital is localized to the defect.

Charge state LDA GW Hybrid functional

(+) −0.12 +0.04 +0.10
(−) + 0.18 +0.26 +0.29

calculating defect level positions comparable to experiment, it is paramount to select a method
which reproduces the electronic structure of the perfect crystal on both sides of the gap.

Due to the difficulties with the existing implementations of DFT, the calculation of excited
or transition states is usually also not sufficiently accurate, while the usage of exact exchange
consistently in a DFT framework is yet not practical. Because of this, the use of empirically
determined hybrid potentials was suggested in quantum chemistry. The most widely applied
form, the so-called B3LYP potential [12], is based on 20% mixing of the exact Hartree–Fock
(HF) and a GGA exchange potential, extended with a GGA correlation potential [13]. (Also,
the local and non-local parts of both potentials are empirically weighted.) Despite its semi-
empirical nature, the experience in quantum chemistry is very favourable with the B3LYP
potential. It has also been shown [14] that the optical band gap of solids can be calculated to
a good approximation. In the specific case of silicon, our test has shown that B3LYP yields a
much too large indirect band gap (1.84 eV, as compared to the value of 1.17 eV measured at
low temperature). This could not be much improved upon, even if the basis set was increased.
However, Becke himself suggested in a later paper [12] that useful hybrid functionals with a
simple one-parameter mixing of HF and DFT exchange can be used to predict the energetics
of a large set of molecules, and it was also shown [15] that, by varying the mixing parameter
between the HF and the GGA (or LDA) exchange, the correct gap and several other properties of
a solid can be ‘tuned’ in. This possibility has been implemented into the CRYSTAL code [16],
which is capable of both HF and DFT calculations on periodic systems.

Our experience has shown that a 20% mixture of the HF exchange with the most common
LDA exchange can reproduce accurately the very different band gaps of all polytypes of
SiC [17], while giving good values for the other basic properties. A case study on a complex
defect in 3C-SiC proves that the level positions obtained by this mixture are comparable with
those obtained from an approximate GW [9] calculation. The complex BSi + (Ci)2 has two
defect levels in the gap, the lower one (near the VB edge) is doubly occupied, and the higher
one singly occupied in the neutral charge state. Table 1 compares the level positions with
respect to the VB edge of the perfect lattice, as obtained in a pure LDA, an LDA + GW, and
an LDA + 20 exact exchange calculation for the singlet (singly positive and singly negative)
charge states. As can be seen, the hybrid functional mimics the effect of the GW correction
well, while the pure LDA result is not even qualitatively correct for the positive charge
state.

Applying the 20% mixing of HF and LDA exchange gives 1.4 eV for the indirect gap of
silicon (somewhat higher than the observed 1.2 eV) and 5.0 eV for diamond (lower than the
experimental 5.6 eV), so our results for SiC are somewhat fortuitous. The B3LYP functional
has been determined by fitting to a large set of molecular data, and obviously a large set of
solids should be considered (including the band gap into the data set) to optimize the mixing
parameter of a new hybrid functional. In the present study, however, we are only concerned
with defects in silicon. Enhancing the accuracy of the electronic structure calculation in
silicon at the expense of transferability is, therefore, acceptable, provided the other properties
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Figure 1. Dependence of the deviation of the calculated lattice constant, cohesive energy, bulk
modulus and its pressure derivative, as well as of the indirect and direct gap, and the valence band
width of silicon from the experimental values, as a function of the percentage of exact exchange
mixed with the GGA exchange.

Table 2. The properties of bulk silicon calculated with 12% mixing of exact exchange into GGA,
as compared with the experimental data, and with ‘traditional’ plane-wave LDA calculations.

Lattice Cohesive Bulk VB width Indirect gap Direct gap
constant (Å) energy (eV) modulus (Mbar) (eV) (eV) (eV)

12% mixing 5.466 −4.95 0.99 12.65 1.16 4.21
Exptl. [21] 5.431 −4.75 0.99 12.5 1.17 4.19
Plane wave 5.433 −4.84 0.92 12.2 0.5 2.5
LDA [22] [23]

of silicon are still well reproduced. For this purpose, we have investigated the dependence
of the properties of bulk silicon on the mixing percentage of HF exchange into the so-called
PBE potential of GGA [18], using the CRYSTAL’2003 code with norm-conserving Barthelat–
Durand pseudopotentials [19] and a Gaussian basis (double-ζ plus polarization functions:
21G∗), optimized to these pseudopotentials for the valence electrons [20]. Figure 1 shows the
results.

The rough power-function fitting to the data points show that the well known overbinding
(too negative cohesive energy) and overestimation of the lattice constant of DFT is not very
sensitive to the mixing. On the other hand, both the elastic constants and the parameters
characterizing the quality of the electronic structure have optimum values in the 10–15%
range. The best agreement with experiment can be obtained at 12%.

Table 2 shows the calculated values compared to experimental data [21] and to traditional
LDA calculations [22, 23]. As can be seen, the structural and elastic data fit the experimental
values about the same way as the traditional plane wave LDA results (which are better converged
in terms of the basis set). At the same time the electronic structure obtained with the hybrid
functional gives excellent agreement with experiment. It should be emphasized that not only
is the indirect (minimum) gap reproduced well, but also the relative energies in the conduction
band are correct and, at the same time, the valence band-width has also improved.
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These results show that our one-parameter hybrid functional gives an adequate description
of the perfect crystal. In order to check whether defect properties are also well reproduced, we
have selected the donor state of the hydrogen interstitial. Since the bond centre configuration of
hydrogen does not change between the neutral and the positive charge state (and the relaxation
is also relatively small), the one-electron energy level occupied in the neutral charge state
should be close to the position of the (+/0) occupation level (i.e. the Fermi level position,
where the charge state changes). The latter has been measured experimentally by deep level
transient spectroscopy (DLTS) to be at EV + 0.96 eV [24]. The calculation with 12% mixing
results in 0.90 eV. This shows that the method is capable of correctly predicting defect levels
as well. (Pure GGA gives EV + 0.46 eV.)

The CRYSTAL code has the additional advantage of also treating core electrons of
an atom explicitly, and it also allows for mixing all-electron and pseudopotential + valence
electron treatments for different atoms. This feature makes the first principles calculation of
the hyperfine (hf) interactions of the defect spin with neighbouring atoms (as measured by
magnetic resonance spectroscopy) possible, without using a frozen core approximation. This
will be utilized in the hf calculations.

In the following we will show that, in critical cases, where LDA or GGA fail, the hybrid
functional approach results in an equilibrium configuration of the correct symmetry. Still,
usage of the exact exchange means the calculation of all exchange integrals: a process scaling
with the fourth power of the number of electrons. This makes geometry optimization very
costly. Therefore, in our large-scale electronic structure calculations for BICs, we have pre-
relaxed the defect structures using pure GGA. For that purpose the very fast SIESTA code has
been used [25].

SIESTA implements DFT combined with the pseudopotential approximation, and uses
numerical atomic orbitals (NAOs) as a basis set. It is aimed at large-scale calculations
with linear-scaling simulations but is also capable of employing conventional diagonalization
methods. In this work, only the latter capability was used. Norm-conserving pseudopotentials
have been generated according to the Troullier–Martins [26] scheme, in the Kleinman–
Bylander [27] separable form. Core radii of 1.78 and 1.89 bohr were used for B and Si,
respectively. The program requires the use of a grid to compute some of the contributions to
the matrix elements and total energy and also for performing the Fourier transforms needed
to evaluate the Hartree potential and energy by solving Poisson’s equation in reciprocal
space. A grid—fine enough to represent plane waves with kinetic energy up to 90 Ryd—
has been used. Calculations have been carried out using the same GGA functional [18] as
with CRYSTAL. The NAO basis set also consisted of double-ζ plus polarization functions.
The maximum extent of these functions was 5.965 Å. Structural relaxations have been
performed by means of the conjugated gradient algorithm until the forces were smaller than
0.04 eV Å−1. In order to keep the usage of resources within the available framework
without compromising the predictive power of the results, careful convergence tests had
been carried out [4]. Based on those results, all calculations were done in a 64-atom
supercell, using a 23 Monkhorst–Pack (MP) k-point set [28] in the Brillouin zone (BZ)
summation.

Table 3 shows the calculated formation energy of the BICs at their equilibrium geometry,
compared to the values of Windl et al [2]. The good agreement shows that the same
configuration was found for each BIC. Consequently, hybrid functional calculations were
carried out with the CRYSTAL code in the same supercell, using the same MP set.

Although the formation energies are near convergent,the interaction of the repeated defects
still causes a significant dispersion in the defect levels. The positions of the levels of an isolated
defect can be estimated using a tight binding retrofit [29].
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Table 3. Comparison of BIC formation energies obtained with the 23 MP set in the present
SIESTA calculations (using localized numerical atomic orbitals, as basis, and norm-conserving
pseudopotentials) with those obtained with the 43 MP set of the VASP calculation of Windl et al [2]
(using plane waves, as basis, and ultrasoft pseudopotentials), both within the GGA approximation.
The values contain no corrections (those of Windl et al have been obtained from their figure 1 by
subtracting the charge correction). The formation energies have been calculated with respect to Sii
and B−

s .

BIC Present Windl et al [2]

64-atom cell 64-atom cell,
23 MP set 43 MP set

B− 0.00 0.0
BI+ −0.69 −0.5
BI2 −2.30 −2.3
BI+

3 −4.36 −4.8

B2−
2 + 0.76 + 0.6

B2I −1.71 −1.7
B2I2 −2.74 −2.7
B2I3 −5.54 −5.7
B3I− −2.67 −2.7
B3I2 −3.69 −3.6
B3I−3 −6.30 −6.3
B4I2− −1.92 −2.1
B4I2 −5.00 −4.9
B4I−3 −6.68 −6.5

3. Results on the Bs + V and Bs + Sii defects

Two basic boron-related defect centres,G10 [5] and G28 [6],have been extensively investigated
in the past experimentally. Although the results are far from conclusive, it is interesting to see
what the hybrid functional calculations result in for these defects.

The G10 EPR centre, having a curiously low C1 symmetry, was assigned to a second
nearest neighbour pair of a boron substitutional (Bs) and a vacancy (V). Watkins has argued
that the nominal C1h symmetry of such an arrangement is distorted into C1 because of a pseudo
Jahn–Teller effect (see figure 2(a)). The t2 level of an undistorted vacancy splits upon the C1h

perturbation by the second neighbour B atom in such a way that the two lower lying levels are
in close proximity. This causes the further distortion from C1h to C1. The symmetry and the
assignment has later been confirmed by ENDOR; however, it is rather mysterious why a first
neighbour pair is not the preferred configuration for this defect.

Our calculations predict the first neighbour pair to be lower in energy by 0.18 eV. (It
should be noted though, that the 64-atom supercell, used in the present study, is certainly too
small for giving a convergent energy difference for two configurations with rather different
spatial extension.) The equilibrium symmetry of both configurations is C1h! For the second
neighbour pair the first two defect levels with β spin (unoccupied) above the VB edge are
within 0.05 eV of each other. This finding supports the assumption of Watkins about a likely
pseudo Jahn–Teller effect. That cannot be taken into account in a 0 K calculation, which is then
bound to end up with C1h symmetry. For the first neighbour pair the same difference is only
0.005 eV (the next state being 0.3 eV higher). This indicates that the nominally C3v symmetry
of this configuration (see figure 2(b)) causes a splitting of the t2 state of the vacancy into a
lower lying e and a higher lying a1 state. The occupation of the e state by one electron causes



Electronic structure of boron-interstitial clusters in silicon S2147

t2 t2

a1

C1h C1h
C3v

a1

a1

a1

e

(a) (b)

Figure 2. Symmetry and level splitting in the second neighbour (a) and first neighbour (b) B–V
pair.

Table 4. Measured and calculated hyperfine parameters for the BV defect (in MHz). The four
highest silicon hyperfine interactions are shown.

G10 [5] Second neighbour B–V First neighbour B–V
Measured by ENDOR (MHz) Calculated (MHz) Calculated (MHz)

A1 A2 A3 A1 A2 A3 A1 A2 A3

B(11) 0.541 0.537 0.459 2.0 1.5 1.2 7.4 5.4 4.9
Si-1 393.9 249.9 247.8 320.0 193.5 193.1 355.4 206.1 205.6
Si-2 67.2 56.8 55.2 59.7 50.0 48.6 79.1 66.5 65.3
Si-3 63.1 53.4 51.9 60.1 49.4 48.2 77.6 65.1 63.9
Si-4 36.1 23.6 23.1 20.6 9.7 9.7 23.6 17.2 16.9

a static Jahn–Teller distortion into C1h (from which the symmetry could be lowered further by
a pseudo Jahn–Teller effect.) That makes the first neighbour pair also a good candidate for
G10!

The calculated hyperfine parameters for the first and second neighbour pair are very similar
(see table 4). As expected there is some difference in the amount of localization on the boron
atom, with a lower value in the case of the second neighbour pair. However, the accuracy of
the hyperfine calculation does not allow a clear-cut judgment, whether the first or the second
neighbour pair should be assigned to the G10 centre. Both have similar characteristics, and
both sets of results are in reasonable agreement with the measured data. We are inclined,
however, to assign the observed signal to the energetically more favourable, and by any means
more ‘natural’ first neighbour B–V pair, resolving a long-standing mystery. We emphasize
that this is only possible on the basis of an accurate calculation of the electronic structure,
showing that the first neighbour pair has C1h symmetry at T = 0 K, instead of C3v, with a
likely distortion to C1 for finite temperatures. The singly occupied level of the first neighbour
Bs + V pair is at EV + 0.25 eV. Convergence tests on larger cells are in progress.



S2148 P Deák et al

(a) (b) (c) (d)

Figure 3. The electronic structure of BI = Bs + Sii in the C3v positive (b) in the C1h neutral (c) and
in the C1h negative (d) charge state, compared with the band structure of the perfect Si64 supercell
(a). In case of open shell systems solid (dashed) lines show states with α(β) spin. Energy values
are in Hartree (0.1 H = 0.3675 eV). (Note that the primitive BZ is back-folded to the BZ of the
supercell: twice in the L [111] and four times in the [100] direction.) The line marked EF separates
occupied and unoccupied states.

The G28 EPR centre and the corresponding DLTS peaks were assigned to a BI pair [6].
Recently, the so-called R infrared (IR) centre was also tentatively assigned to a BI = Bs + Sii

defect [4, 30]. However, the BI defect is a bistable complex with negative U behaviour4: the
occupation levels are at E(+/0) = EV + 0.99 eV and E(0/−) = EV + 0.75 eV. The reverse
order means that the neutral charge state is never stable in equilibrium, and the defect changes
from the positive charge state directly to the negative one at EF = EV +0.88 eV. Therefore, the
G28 centre can only be detected in non-equilibrium EPR experiments (e.g. under illumination),
for EPR measures the paramagnetic neutral charge state. The observed hf interactions imply
a defect with C1h symmetry.

Previous theoretical studies have found [30–33], indeed, that the BI defect is bistable. In
the (+) charge state it consists of a Sii at the tetrahedral site, next neighbour to a BSi. This
defect has C3v symmetry (see figure 3(b)). In the (−) charge state, a [110] split interstitial
configuration with C1h symmetry is preferred (see figure 3(d)). In the (0) charge state both

4 The name, negative-U , refers to the apparent negative Coulomb energy for two holes ((+) charge state) or two
electrons ((−) charge state) which seems to make them energetically favoured over the neutral charge state. In
fact, the negative-U behaviour is due to the energy gained by strong relaxation of the nuclei, leading to different
configurations of the defect in the different charge states.
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Table 5. Comparison of the occupation levels calculated by different methods for the BI defect
with the DLTS results for the G28 centre. Values are given (in eV) with respect to the valence band
edge.

LDA [32] LDA [30] GGA [33] Present GGA Experiment [6]

Correction None Empirical Scissor (+ charge Based on level positions
correction) in hybrid functional calc.

(+/0) 0.66 1.07 1.1 0.94 0.99
(0/−) 0.55 0.79 0.7 0.66 0.75
(+/−) 0.61 0.93 0.9 0.80 0.87

Table 6. Measured and calculated hyperfine parameters for the BI defect in (10−4 cm−1).

G28 [6] BI

A1 A2 A3 A1 A2 A3

B(11) 21.5 4.2 4.1 34.2 17.8 17.6
Si-1 37.5 24.3 24.3 32.5 14.7 14.5
Si-2 19.0 0.0 0.0 22.6 10.5 10.5

configurations constitute local minima of the total energy surface. So far, all calculations have
predicted the C3v configuration to be more stable (by 0.21 eV in LDA and by 0.07 eV in GGA)
than the C1h one in the neutral state—in contrast to the experimental observation. This has
always been suspected [32] to be the consequence of the band gap error.

We have optimized the geometry of the BI defect in both the (+), and the (−) charge state
using our hybrid functional with the CRYSTAL code. The obtained geometries did not deviate
significantly from those obtained in a pure GGA calculation with SIESTA. However, in the
neutral charge state the C1h configuration (figure 3(c)) was found to be more stable by 0.14 eV
than the C3v—in agreement with experiment.

The electronic structure resulting from the hybrid functional calculations are also shown
in figure 3. For comparison the band structure of the perfect crystal is given in the BZ of the
supercell. In all cases the top of the VB is not very much disturbed, showing that the supercell
is big enough to accommodate the defect. Still, for the C1h configurations, the dispersion of
the highest occupied defect state is considerable. The level position of the isolated defects can
be estimated by the tight binding retrofit to EV + 0.42 eV and EV + 0.46 eV for the neutral and
the negative charge state, respectively.

One-electron levels can be directly linked to defect-to-band photoluminescence, but none
has yet been assigned to the BI defect. Only occupation levels are known (from DLTS),
which require the comparison of the energies of the neutral and the charged states, which is
not yet possible in the present CRYSTAL version. Therefore, we have used the positions
of occupied states obtained here with respect to the VB edge, and corrected the GGA total
energies, obtained with SIESTA, accordingly. The results are shown in table 5. It can be
stated that our procedure is at least as effective as other correction schemes in predicting
DLTS results. It should be emphasized, however, that the agreement confirms that the hybrid
functional calculation results in good one-electron level positions, while giving the correct total
energy sequence among various configurations in the neutral state. Hopefully, the CRYSTAL
code will soon become capable of directly calculating the occupation levels as well. It should
be noted here that, unlike in [33], we have not applied any correction for the charged supercells,
since a present study of ours [34] indicated that the usually applied procedure introduces a
larger error than what it corrects.
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(a) (b) (c) (d)

Figure 4. The electronic structure of (a) BI+ = (Bs + Sii)+, (b) B2I0 = (B2)
0
s , (c) B3I− = (Bs +

Bi + Bs)
−, and (d) B4I2− = (Bs + (B2)s + Bs)

2− in the BZ of the supercell.

Having obtained the symmetry of the neutral charge state with the hybrid functional
calculation in agreement with G28 centre, the hf data can also be compared. This is shown
in table 6. Again, the localization on the boron atom is somewhat overestimated, but—within
the accuracy of the hf calculation—the character of the centre is well reproduced.

4. Electronic structure of the BICs

For comparison of their formation energy, BICs had been considered earlier [1, 2] in their stable
charge state relevant to the case when the Fermi level is pinned at midgap (corresponding to the
situation after implantation), as shown in table 3. We have calculated the electronic structure
for these states, except for B3I2, where the hybrid functional calculation clearly indicates that
the singly negative charge state should be stable if the Fermi level is pinned to midgap (the
position of the highest, doubly occupied level is at EV + 0.40 eV).

The electronic structure of the BICs fall into two categories. In the first one, the boron
atoms (which are always negatively charged but may be compensated by interstitial Si)
introduce delocalized, occupied effective mass states very near the VB edge (the distance
falling within the error bar of the calculation). The BIC series Bn−

n and BI+, B2I0, B3I−, B4I2−
fall into this category. Loss of activation occurs only due to the compensating effect of the
self-interstitial in the latter series. It should be noted that the clusters (Bs)

2−
2 , and (Bs)

3−
3 have

positive formation energies with respect to the isolated B−
s (see table 3 and [2]), obviously

because of the repulsion of two negatively charged B atoms. With the hybrid functional
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(a) (b) (c) (d)

Figure 5. The electronic structure of (a) BI0
2 = (Bs + 2Sii)

0, (b) B2I0
2 = [(B2)s + Sii]0,

(c) B3I−2 = (Bs + 2Bi)
−, and (d) B4I0

2 = (Bs + 2Bi + Bs)
0 in the BZ of the supercell. The

line marked EF separates occupied and unoccupied states. Solid lines: spin-up, dashed lines:
spin-down states.

we find, however, that a (Bs)
0
2 complex, in which the boron atoms relax back into the plane of

their respective three Si neighbours into an sp2 configuration and are not bonded to each other,
is energetically favoured over isolated B0

s atoms. This fact may be used to explain why (Bs)
2−
2

complexes can after all be observed by infrared spectroscopy (see [4] and references therein).
It is known that boron diffuses as a neutral interstitial, and becomes substitutional by the kick
out reaction B0

i => B−
s + Si0

i + h+, or B−
s + I+. A divacancy having captured a boron atom

forms the BV = (Bs + V)0 defect. A B0
i atom may find this complex (no Coulomb repulsion),

forming a stable (Bs + Bs)
0 complex which will consequently trap two electrons but can no

longer dissociate because of the high barrier for dissociation. The electronic structures of the
BnI series are shown in figure 4. The EMT states are within 0.1 eV of the VB edge.

The second category of BICs introduces localized states in the band gap. The electronic
structures are shown in figures 5, 6. The estimated positions of the isolated defect levels are
given in table 7. As can be seen, these states are not too deep for the BnI3 series (figure 6)
and are likely to be filled even after annealing. In contrast, the BnI2 series introduces states
near midgap (figure 5), and are likely to become empty when annealing of the intrinsic defects
causes the lowering of the Fermi level. Therefore, this is the class of BICs which impair the
activation rate the most.

The results given in table 7 indicate that,based on the electronic structure, it will be difficult
to distinguish between BICs containing the same number of interstitials and different number
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(a) (b) (c) (d)

Figure 6. The electronic structure of (a) BI+
3 = (Bi + 2Sii)+, (b) B2I0

3 = [2Bi + Sii]0,
(c) B3I−3 = (Bi + 2Sii)−, and (d) B4I−3 = (Bs + 3Bi)

− in the BZ of the supercell. The line marked
EF separates occupied and unoccupied states. Solid lines: spin-up, dashed lines: spin-down states.

Table 7. Estimated level position of isolated BnIm clusters with respect to the VB edge (in eV).
Always the highest occupied localized acceptor state is given for the charge state relevant to a Fermi
level pinned to midgap.

n = 1 n = 2 n = 3 n = 4

m = 1 <0.1 <0.1 <0.1 <0.1
m = 2 0.53 0.47 0.40 ∼0
m = 3 ∼0 0.07 0.22 0.14

of boron atoms. On the other hand, if recent suggestions about the average value of m/n ≈ 1
get confirmed, the diagonal of table 7 shows clear differences among the possible compositions.

5. Summary

We have shown that a one-parameter hybrid functional is capable of the accurate calculation
of the whole electronic structure and the elastic properties of crystalline silicon, and at the
same time can provide dependable defect level positions in the gap. Using this method we
have investigated the boron + vacancy and boron + self-interstitial centres in detail, giving a
consistent description of the experimentally observed G10 and G28 centres. We also report the
electronic structure of all the boron-interstitial clusters (BICs) which may affect the activation
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rate of boron implantation. We find that BnI2 clusters, with deep acceptor states just below
midgap, can be the main source of decrease in the activation rate. In contrast, BnI clusters
cause shallow EMT states. BnI3 clusters lie between these two sets.
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